Opis dela v izobraževanju in projektih
Daniel Tement, profesor računalništva in informatike
Daniel Tement
Področja izobraževanja
vodi predavanja in vaje s področij:
- poslovna analitika
- poslovna inteligenca
- umetna inteligenca
- strojno učenje
- osnove programiranja
Področja projektnega sodelovanja
Znotraj tega projekta pomagamo podjetjem na več področjih:
Skrb za zdravje
- razvoj algoritmov in modelov za optično metodo neinvazine detekcije parametrov v krvi in koži človeka (stopnja sladkorja, holesterola, bilirubina, …); pri tem uporabljamo analizo podatkov z različnimi metodami, kot so korelacijska analitika, regresija, nevronske mreže, strojno učenje,…
- pomoč na področju statistike in poslovne inteligence pri analizi in vizualizaciji podatkov na področju raziskav matičnih celic;
Kmetijstvo
- razvij algoritmov in modelov za hitro in preprosto detekcijo določenih substanc v kmetijskih pridelkih;
Pametna okolja
- pomoč pri razvoju platfrome za vzpostavitev pametne tovarne;
- razvoj poslovne inteligence in optimizacije za področje pametne logistike;
Areas of education
Leads lectures and exercises from different fields.
Business Analysis
- The Need for Business Analysis
- The Breadth and Depth of the Ba Role
- Roles and Responsibilities
- Frameworks, Tools and Techniques
- Career Roadmap
Business Intelligence using Tableau
- Data Preparation
- Basic Charts
- Advanced Charts
- Interactivity
- Dashboards and Story Points
- Maps and Geospatial Visualization
Data Science using R
- Introduction to RStudio
- Data Import and Data Manipulation
- Basic Data Visualization
- Basic Statistics
- Linear Regression
- Basics of Deep Learning and Mashin Learning
Programming with Pyton
- Programming tool PyCharm
- Numbers and Expressions
- Strings and Functions
- Variables
- Taking input
- If Statements
- Lists
- Loops
- Dictionaries and Tuples
- Functions
Areas of research
Health care
- development of algorithms and models for optical noninvasive detection method for blood and human skin parameters (sugar, cholesterol, bilirubin, …); using data analysis with various methods, such as correlation analysis, regression, neural networks, machine learning, …
- statistics and business intelligence in the analysis and visualization of data in the field of stem cell research;
Agriculture
- development of algorithms and models for quick and easy detection of certain substances in agricultural products;
Smart Environments
- development of the model and platform for the establishment of a smart factory;
- development of business intelligence and optimization in the field of smart logistics;